Structure Reports

Online
ISSN 1600-5368

Ana-María Lumbreras-García, Alberto Galindo-Guzmán, Dino Gnecco, Joel-Luis Terán and Sylvain Bernès*

Centro de Química, Instituto de Ciencias, Universidad Autónoma de Puebla, AP 1613, 72000 Puebla, Pue., Mexico

Correspondence e-mail:
sylvain_bernes@hotmail.com

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.044$
$w R$ factor $=0.132$
Data-to-parameter ratio $=8.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

(1'R,3S)-2-Oxo-1-(1'-phenylethyl)piperidine3 -carboxylic acid: a case of a very strong intramolecular hydrogen bond

The title compound, $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{3}$, exhibits a very strong $\mathrm{C}=\mathrm{O} \cdots \mathrm{H}-\mathrm{O}$ intramolecular hydrogen bond, characterized by an $\mathrm{O} \cdots \mathrm{H}$ separation of 1.39 (7) \AA and an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angle of $153(5)^{\circ}$.

Comment

We are currently interested in the preparation of enantiopure 2-oxo-piperidines (Roa et al., 2004), since they are useful starting materials for the asymmetric synthesis of some complex alkaloids and related compounds. As part of this project, we have synthesized ($1^{\prime} R$)-2-oxo-1-(1^{\prime}-phenylethyl)-piperidine-3-carboxylic acid (Micouin et al., 1996), as an epimeric mixture at C3, by cyclization of an enantiopure malonic acid diethyl ester derivative (see Experimental). This epimeric mixture was purified and the main product, (I), was isolated and crystallized. Although modern NMR techniques are available for the assignment of absolute configuration (Seco et al., 2004), we completed the characterization of (I) with a crystallographic study.

For (I) (Fig. 1), the absolute configuration at C 3 is S, on the basis of the known configuration at Cl^{\prime}. The six-membered ring of the piperidine moiety exhibits the expected geometry (Table 1). The 2-oxo group induces a significant shortening of the formal σ bond $\mathrm{N} 1-\mathrm{C} 2[1.327$ (5) \AA] , indicating a strong participation of the enolate tautomer in the solid state. This is also reflected in the bond length observed for the carbonyl group, $\mathrm{C} 2=\mathrm{O} 7=1.252$ (4) Å. Such a geometry is common for 2-piperidones (e.g. Forns et al., 1999; Kende et al., 2001; Christoffers et al., 2003) and related bicyclic compounds (e.g. Amat et al., 2003; Roa et al., 2003). The geometry of the carboxylic acid group is also as expected and the position of the H atom of this group was reliably determined from the diffraction data.

The most striking feature of (I) is the very strong intramolecular hydrogen bond formed between the $\mathrm{O}-\mathrm{H}$ group at C 8 and the O atom of the carbonyl group at C 2 (Fig. 1 and Table 2). This unusually short contact is greatly favoured by

Received 13 September 2004 Accepted 27 September 2004 Online 30 October 2004

Figure 1
The structure of (I), with displacement ellipsoids at the 50% probability level. Atom H9 is represented as a sphere of arbitrary radius, although an isotropic displacement parameter was refined for this atom. The dashed line indicates the strong intramolecular hydrogen bond.
the conformation of the piperidine ring, bringing atoms O 7 and O 9 into much closer contact than the sum of their van der Waals radii [O7…O9 2.495 (5) Å]. The six-membered C2/C3/ $\mathrm{C} 8 / \mathrm{O} 9 / \mathrm{H} 9 / \mathrm{O} 7$ ring formed in this way should minimize the free energy for (I). Such a conformation is similar to that found in enol tautomers of 1,3-propanediones and 3-substituted pentane-2,4-diones. Diffraction studies (Emsley, 1980; Emsley et al., 1989) have shown that, for these compounds, the $\mathrm{O} \cdots \mathrm{H}$ separations range from 1.32 to $1.70 \AA$, comparable with the $\mathrm{O} \cdots \mathrm{H}$ separation of 1.39 (7) \AA observed in (I). Even shorter contacts have been observed for related compounds, for instance $\mathrm{O} \cdots \mathrm{H}=1.27 \AA$ in the case of 2-carboxy-3hydroxyphenalenone (Sugawara et al., 1992).

As expected, the lengthening of the covalent $\mathrm{O} 9-\mathrm{H} 9$ bond [1.17 (7) \AA] places atom H9 close to the midpoint of the formal donor and acceptor atoms, giving some hydroxyl character to atom O7. This structural feature has an important consequence for the reactivity of (I), in that reduction of the carbonyl functionality at C 2 should be facilitated. In contrast, the same reaction carried out with the epimer $\left(1^{\prime} R, 3 R\right)$, i.e. with the carboxylic group in the axial position at C 3 , should require stronger conditions, since the conformation of the 2-piperidone then precludes the formation of an intramolecular hydrogen bond. This prediction assumes that the hydrogen bond for (I) also exists in solution, a reasonable hypothesis when considering the strength of this contact. This assumption is also supported by spectroscopic data; indeed, we were unable to detect a ${ }^{1} \mathrm{H}$ NMR signal for H 9 . We attribute this lack of signal to a very efficient spin-spin relaxation mechanism with a neighbouring nucleus, resulting in severe line broadening for H 9 . This is in agreement with the strong localization observed for H 9 in the solid state, as reflected in the small displacement parameter for this atom, $U_{\text {iso }}=$ $0.136(19) \AA^{2}$. These observations allow one, for instance, to discount the possibility of formation of hydrogen-bonded
dimers in solution for (I), at least in polar solvents (Moulton \& Zaworotko, 2001).

In conclusion, (I) is a clear illustration of the 'resonanceassisted hydrogen bond' concept, first introduced by Gilli and co-workers (Gilli et al., 1989; Jeffrey, 1997). The 2-piperidone, via its enolic form, assists the formation of an intramolecular hydrogen bond, which, in turn, increases the contribution of this tautomer. We hope that this feedback phenomenon will provide a potential entry to the synthesis of enantiomerically pure 3-substituted piperidines.

Experimental

To a solution of $\mathrm{Ba}(\mathrm{OH})_{2}(0.515 \mathrm{~g}, 3.012 \mathrm{mmol})$ in $\mathrm{MeOH}(300 \mathrm{ml})$ was added a solution of 2-[3R-(1-phenylethylamino)propyl]malonic acid diethyl ester $(0.807 \mathrm{~g}, 2.51 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{ml})$. The mixture was stirred for 4 h at 293 K . The mixture was then treated with HCl to give $\mathrm{pH}=6-7$ and the solvent was removed in vacuo, giving a viscous oil, which was washed with a $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ mixture (3:1). The resulting solution was filtered and the solvent removed in vacuo, giving an epimeric mixture of ($1^{\prime} R$)-2-oxo-1-(1^{\prime}-phenylethyl)-piperidine-3-carboxylic acid (yield 60%) and a byproduct, identified as $\left(1^{\prime} R\right)-\left(1^{\prime}\right.$-phenylethyl)-2-oxo-piperidine. Separation by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 95: 5\right)$ afforded (I) as the main product (yield from starting material 40%). Single crystals were obtained from a solution in diethyl ether- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2: 1)$. Analysis: $[\alpha]_{D}{ }^{20}=+20$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, δ, p.p.m.): 1.68 ($d, 3 \mathrm{H}$, H^{\prime}), 1.70-1.90 ($m, 2 \mathrm{H}, \mathrm{H} 5$), 2.00-2.35 ($m, 2 \mathrm{H}, \mathrm{H} 4$), 2.80-3.00 ($m, 1 \mathrm{H}$, H 6), 3.20 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H} 6$), 3.37 ($m, 1 \mathrm{H}, \mathrm{H} 3$), 6.05 ($q, 1 \mathrm{H}, \mathrm{H}^{\prime}$), 7.10.1-7.30 $(m, 5 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$, p.p.m.): 15.50 ($\left.\mathrm{C}^{\prime}\right)$, 21.76 (C5), 23.27 (C4), 42.25 (C6), 45.10 (C3), 51.56 (C^{\prime}), 126-128 (5C, Ph), 138.70 (C-ipso), 169.20 (C8), 170.30 (C2).

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{3}$
$M_{r}=247.29$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=6.1413$ (11) A
$b=10.2111$ (12) \AA
$c=21.174(3) \AA$
$V=1327.8(3) \AA^{3}$
$Z=4$
$D_{x}=1.237 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker $P 4$ diffractometer
20/ ω scans
2838 measured reflections
1382 independent reflections
779 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=25.0^{\circ}$

> Mo $K \alpha$ radiation
> Cell parameters from 52 \quad reflections
> $\theta=3.9-10.6^{\circ}$
> $\mu=0.09 \mathrm{~mm}^{-1}$
> $T=296(1) \mathrm{K}$
> Plate, colourless $0.60 \times 0.30 \times 0.08 \mathrm{~mm}$
$h=-7 \rightarrow 6$
$k=-1 \rightarrow 12$
$l=-25 \rightarrow 1$
3 standard reflections
every 97 reflections
intensity decay: 2.5\%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.132$
$S=0.98$
1382 reflections
168 parameters
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0691 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.16 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.13$ e \AA^{-3}
Extinction correction: SHELXTL-
Plus (Sheldrick, 1998)
Extinction coefficient: 0.023 (5)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 2$	$1.327(5)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.456(6)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.476(5)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.456(6)$
$\mathrm{N} 1-\mathrm{C} 1^{\prime}$	$1.477(5)$	$\mathrm{O} 7-\mathrm{H} 9$	$1.39(7)$
$\mathrm{C} 2-\mathrm{O} 7$	$1.252(4)$	$\mathrm{C} 8-\mathrm{O} 9$	$1.316(6)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.517(6)$	$\mathrm{C} 8-\mathrm{O} 10$	$1.211(5)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.497(6)$	$\mathrm{O} 9-\mathrm{H} 9$	$1.17(7)$
$\mathrm{C} 3-\mathrm{C} 8$	$1.517(6)$		
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6$	$123.3(3)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$112.9(4)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1^{\prime}$	$119.3(3)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$114.6(4)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 1^{\prime}$	$117.3(3)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1$	$114.9(4)$
$\mathrm{O} 7-\mathrm{C} 2-\mathrm{N} 1$	$121.2(4)$	$\mathrm{C} 2-\mathrm{O} 7-\mathrm{H} 9$	$102(2)$
$\mathrm{O} 7-\mathrm{C} 2-\mathrm{C} 3$	$119.0(4)$	$\mathrm{O} 10-\mathrm{C} 8-\mathrm{O} 9$	$121.4(4)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$119.7(3)$	$\mathrm{O} 10-\mathrm{C} 8-\mathrm{C} 3$	$121.5(5)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 8$	$112.5(4)$	$\mathrm{O} 9-\mathrm{C} 8-\mathrm{C} 3$	$117.1(5)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$114.5(4)$	$\mathrm{C} 8-\mathrm{O} 9-\mathrm{H} 9$	$105(3)$
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 2$	$114.3(4)$		

Table 2
Hydrogen-bonding geometry (\AA, ${ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O9-H9 $\cdots \mathrm{O} 7$	$1.17(7)$	$1.39(7)$	$2.495(4)$	$153(5)$

Atom H9 was found in a difference map and was refined freely. No evidence for disorder was found for this site. H atoms bonded to C atoms were placed in idealized positions, with $\mathrm{C}-\mathrm{H}$ distances of 0.93 for aromatic $\mathrm{CH}, 0.96$ for methyl $\mathrm{CH}_{3}, 0.97$ for methylene CH_{2} and $0.98 \AA$ for methine CH , and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic CH , methine CH and methylene CH_{2}, and $1.5 U_{\mathrm{eq}}(\mathrm{C})$ for methyl CH_{3}. In the absence of significant anomalous scattering effects, Friedel pairs were merged. The absolute configuration was assigned on the basis of the known configuration of the starting material.

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 1998); program(s) used to refine structure: SHELXTL-Plus; molecular graphics: SHELXTLPlus; software used to prepare material for publication: SHELXTLPlus.

AMLG is grateful to CONACyT for scholarship No. 171984.

References

Amat, M., Llor, N., Escolano, C., Huguet, M., Pérez, M., Molins, E. \& Bosch, J. (2003). Tetrahedron Asymm. 14, 293-295.

Christoffers, J., Werner, T., Unger, S. \& Frey, W. (2003). Eur. J. Org. Chem. pp. 425-431.
Emsley, J. (1980). Chem. Soc. Rev. 9, 91-124.
Emsley, J., Ma, L. Y. Y., Bates, P. A., Motevalli, M. \& Hursthouse, M. B. (1989). J. Chem. Soc. Perkin Trans. 2, pp. 527-533.

Forns, P., Fernández, M., Diez, A., Rubiralta, M., Cherrier, M. P., Bonin, M. \& Quirion, J.-C. (1999). Synthesis, pp. 258-263.
Gilli, G., Bellucci, F., Ferretti, V. \& Bertolasi, V. (1989). J. Am. Chem. Soc. 111, 1023-1028.
Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding, edited by D. G. Truhlar, pp. 98-103. New York: Oxford University Press.
Kende, A. S., Dong, H.-Q., Mazur, A. W. \& Ebetino, F. H. (2001). Tetrahedron Lett. 42, 6015-6018.
Micouin, L., Bonin, M., Cherrier, M.-P., Mazurier, A., Tomas, A., Quirion, J.-C. \& Husson, H.-P. (1996). Tetrahedron, 52, 7719-7726.
Moulton, B. \& Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.
Roa, L. F., Gnecco, D., Galindo, A., Juárez, J. \& Bernès, S. (2003). Anal. Sci. 19, 1223-1224.
Roa, L. F., Gnecco, D., Galindo, A., Terán, J. L. \& Bernès, S. (2004). Tetrahedron Asymm. 15, 847-850.
Seco, J. M., Quinoa, E. \& Riguera, R. (2004). Chem. Rev. 104, 17-118.
Sheldrick, G. M. (1998). SHELXTL-Plus. Release 5.10. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996). XSCANS. Version 2.21. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sugawara, T., Mochida, T., Miyazaki, A., Izuoka, A., Sato, N., Sugawara, Y., Deguchi, K., Moritomo, Y. \& Tokura, Y. (1992). Solid State Commun. 83, 665-668.

[^0]: (C) 2004 International Union of Crystallography

